Abstract: 495
In-vivo Kinematic Comparison of Prodisc-C, Prestige LP and Bryan Cervical Disc
N. Duggal1, I. Kowalczyk2, D. Rabin2
1University of Western Ontario, Clinical Neurological Sciences, London, ON, Canada, 2University of Western Ontario, London, ON, Canada

Background context: The clinical success of cervical arthroplasty hinges on the ability to preserve or improve the biomechanics of the functional spinal unit (FSU).
Purpose: The purpose of this study is to examine the kinematic parameters following cervical arthroplasty with three differing cervical disc replacements.
Study design/setting: Retrospective in-vivo study.
Patient sample: Patients underwent disc replacement with the ProDisc-C, Prestige LP and Bryan cervical disc (n=20 per group).
Outcome measures: Lateral dynamic radiographs of the cervical spine were analyzed using quantitative measurement analysis (QMA, Houston,TX) pre-operatively and post-operatively.
Methods: Kinematic parameters examined included range of motion (ROM), anterior disc height (ADH), posterior disc height (PDH), center of rotation in the X and Y directions (COR X and COR Y, respectively) and FSU angle on lateral radiographs using QMA software.
Results: Post-operatively the ROM increased in ProDisc-C group by 4.7 degrees (p=0.0002) and the Prestige LP by 3.2 degrees (p=0.03). There was no significant change in ROM for the Bryan group. The ADH and PDH increased in the Prodisc-C group (3.0 to 6.1 mm, p< 0.0001 and 2.9 to 4.8 mm, p< 0.0001, respectively) and Prestige LP group (3.69 to 4.59 mm, p=0.01 and 3.09 to 3.74 mm, p=0.002, respectively). The Bryan group demonstrated a 0.82 mm (p=0.003) decrease in ADH and a 1.27 mm (p=0.03) decrease in PDH. The ProDisc-C group had a small but significant shift in COR X values, whereas there was no significant change in the Prestige group. Teh Prestige LP group demonstrated a shift in COR Y values. The FSU angle significantly increased from -2.68 to 1.81 degrees (p< 0.0001) in the ProDisc-C group and decreased from 1.78 to -3.10 degrees (p=0.05) in the Bryan group.
Conclusions: Different cervical disc replacements designs have varying degrees of impact on postoperative kinematics. This is the first comparative study highlighting the in-vivo kinematic differences between differing devices.